If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17^2=x^2+16^2
We move all terms to the left:
17^2-(x^2+16^2)=0
We add all the numbers together, and all the variables
-(x^2+16^2)+289=0
We get rid of parentheses
-x^2+289-16^2=0
We add all the numbers together, and all the variables
-1x^2+33=0
a = -1; b = 0; c = +33;
Δ = b2-4ac
Δ = 02-4·(-1)·33
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{33}}{2*-1}=\frac{0-2\sqrt{33}}{-2} =-\frac{2\sqrt{33}}{-2} =-\frac{\sqrt{33}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{33}}{2*-1}=\frac{0+2\sqrt{33}}{-2} =\frac{2\sqrt{33}}{-2} =\frac{\sqrt{33}}{-1} $
| 8+3t+6=-5t-10 | | -10-8m=-m+4 | | -7h-1=9-6h | | 7h-1=9-6h | | -3s=-4s+10 | | 4v=9+5v | | -m=-39 | | -6f+10=-10-f | | 6-7q=-5q | | (24b+36=) | | -3s-8=-7s | | -10c=-9c-4 | | 6-10w=-7w | | -13-m=52 | | -1/2=1/7u-2/3 | | 2/3x=16/6 | | 54=r-12 | | 6x=-3/2x-17 | | n.6=12 | | x^2-10x=156 | | -13-m=-52 | | y+50=2y | | 4w-40=6(w-7) | | x^2-14x=5 | | 18=6+3x(2x+2) | | 18=6+3x,2x+2 | | 5x-8x=3(x+4 | | x^2+7=103 | | 3x^+2=7x | | |5x|+5=15 | | 4(2+3b)+5b=13 | | −4(2+3b)+5b=13 |